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Abstract

The applicability of adaptive array concepts to continuous aperture

antennas was studied and appropriate aperture field distributions for

patter nulling were found from then. The adaptive array weights were

found to be useful an discrete points in a continuous distribution. This

distzibution could then be used in an aperture integration scheme to

produce a nulled pattern.

Also studied was the use of geometrical optics to calculate the

aperture field distribation of an arbitrarily shaped reflector. Under

some restrictions, geometrical optics can provide a useful approximation.

Constructing the aperture field of a reflector defined by a discrete

grid of points using a numerical ray tracing scheme was also investigated.

Certain numerical problems were identified.

P Finally, an attempt was made to implement the nulled pattern by a

well known beamshaping method based on geometrical optics principles.

TIis technique was found to be inadequate. More promising techniques

for implementing the aperture distributions were suggested but not

pursued in this work.
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I Introduction

The Problem

Many systems which use antennas must contend with the possibility of

Jamming by hostile transmitters. System designers often attempt to deal

with noise by devising signal processing schemes to improve the signal-to-

noise ratio of the system. This may be the only way for most types of

noise, such as thermal noise In the receiver. However, one often has a

little more information about hostile jammers. Using this information

presents the system designer with yet another tool for raising the signal-

to-noise ratio of his creation.

Thoughts like these have led to the development of adaptive antenna

systems. Such an antenna modifies its radiation pattern according to

0some predetermined criterion through feedback control (Reference 1). What

does this accomplish? Basically, an adaptive antenna improves the signal-

to-noise ratio of the system it serves by rejecting interference. Some

adaptive antennas use knowledge of the desired signal to track that signal

and reject all else. If instead, one has knowledge of the spatial distri-

bution of noise sources (Ref 1), he might configure the adaptive antenna

to place pattern nulls on those particular directions. Either way, one

seeks to maximize the signal-to-noise ratio by rejecting the interference

with the antenna itself.

To date, adaptive antenna designers have confined their attention

primarily to array type antenna (Reference 1). Controlling the radiation

pattern of an array antenna is easily accomplished by varying the

amplitude and phase of the input signals which drive each array element



(Reference 1). Since such control is strictly electronic, the system does

not require mechanical assistance; hence, the interest in array antennas.

To control the radiation pattern of a reflector antenna with a continuous

aperture, one would have to devise some scheme to distort the reflector

from its equilibrium shape in a well controlled manner.

Such a scheme requires as a foundation, some knowledge of which

reflector geometries are capable of generating radiation pattern nulls

In predetermined locations. One must know if such shapes exist and if

these shapes are physically realized. Clearly, a reflector with a loop

in it simply will not do. This work attempts to address the problem of

finding shapes that place nulls in the radiation pattern at specified

locations.

Only the simplest techniques were used in this preliminary work.

Principles of geometrical optics were applied to reflector surfaces to

generate approximate aperture field distributions. Geometrical optics

assumes that reflector dimensions are much greater than the wavelength

(Ref 12:454 ). Furthermore, the radius of curvature of the reflector

surface at any point must also remain much greater than the wavelength

(Ref 9: 123 ). This all means that consideration here is confined to

large reflectors that are not too "bumpy". Once the aperture distribution

was determined, simplified aperture integration generated the radiation

pattern. These approximations mean that the results are really only

qualitative; but they do give some idea of the location of nulls in the

radiation pattern, at least for angles not far from boresight. The analyses

were also limited to the two dimensional case, in the interest of simplicity.

In the work that follows, a brief description of Applebaum adaptive

: .- ~ array antenna concepts will be presented in order to familiarize the

2
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reader with the adaptive array ideas which are later applied to apertures.

In Section II, the aperture integration technique used in this work is

described along with proposed aperture field distributions that generate

pattern nulls. Section III deals with geometrical optics as applied to
A

large reflectors. The algorithm used to trace the ray path from feed

to aperture is presented also. Section IV attempts to implement a nulled

pattern using well known beam-shaping techniques also based on geometrical

optics. Section V attempts to find reflectors which implement the aperture

distributions found in Section II. A summary of the results rounds out

this document.

Possible Antenna for Reflector Distortion

At this point, the reader might wonder about the feasibility of a

reflector that changes shape after construction is completed. Jeffrey H.

0Lang, et al have proposed an antenna which might offer a possible solution
4 , to this problem. They have suggested a reflector constructed from a thin

membrane whose shape is controlled electronically (Ref 5,6,7 ).

Figure 1.1 illustrates the Lang concept (Ref 5: 655 ). An electron

*beam controls the shape of the reflector (Ref 5: 655 ). Referring to

Figure 1.1, the command surface is pulled into a roughly parabolic shape

by guy wires and the reflector is pulled toward the command surface by

* application of a bias potential resulting in-an approximately parabolic

reflector (Ref 5: 655). The computer uses optical measurements to

determine if the reflector shape meets tolerances. If not, it instructs

the electron beam to scan the command surface in such a way that the modi-

fled charge distribution and resulting electrostatic force refine the

reflector shape (Ref 6: 992). This results in a parabola which meets

* *.:, some predetermined tolerance.

4$.' 3
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Fig 1-1. Lang Concept

If such an antenna were perfected, it might prove useful in the

reflector distortion problem. Instead of warping the membrane into a

parabolic shape, perhaps the charge distribution could be altered to

form null generating shapes. Such a scheme would be superior to purely

mechanical means especially for large reflectors. J. H. Lang, et al

envision reflectors up one kilometer in diameter (Ref 7 ). A mechanical

scheme for such an antenna must be clever indeed. However, an investi-

gation of the electrostatic reflector's applicability to the nulling

problem is beyond the scope of this work and will not be considered

further.

Applebaum Adaptive Array

, .'. Applebaum devised an adaptive array scheme which maximized the

single-to-noise ratio (Ref 1). It accomplishes this by placing nulls

.4
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in the radiation pattern on the angular positions of any jamming transmitter.

Applebaum assumed that the angles of jammers was known when he developed

his control law for array weights.

Figure 1.2 (Ref 1: 585) provides a starting point for the description

of Applebaum's array. The array in question has K elements. The desired

input signal at element I is xi and the undesirable noise input at element

I is ni. Actually, these are the complex envelopes of the desired signal

and noise. The output desired signal vs is the sum of the x i weighted by

the appropriate wi. The output noise signal vn is the sum of the n

similarly weighted by the wi.

One knows from probability and communication theory that Pij=

E _[ni*nJI gives the covariance of noise signals ni and n . In developing

his array concept, Applebaum assumed that the pij are known. They depend

only on receiver noise and the angular distribution of the noise sources

(Ref 1: 585). He then defined the noise covariance matrix as M = [pij]

where i and j both vary from one to K (Ref 1: 586 ).

Applebaum further assumed that the desired signals were narrowband.

In general, the interelement phase shift in an array is frequency

dependent (Reference 1). However, if the desired signal has narrow-

bandwith, the interelement phase shift is essentially constant and

depends only on interelement spacing and angle of incidence. This enabled

Applebaum to write the desired signals xi as xi = asi where a is the com-

plex envelope of the desired signal incident on the array and the s i is

- a phase factor depending on angle of incidence, interelement spacing, and

element pattern. Assuming isotropic elements, the total phase shift at

- the th element referenced to the first element is sL(i-1) where a = 2w/x

S." , and L - d sin e as shown in Figure 1.3. Therefore, the s are given by

5
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X (Ref 1: 586):

,5. --

Ss t - exp (odi sin e)-

.With these definitions in hand, Applebaum determined that the

.optimum weights which maximized signal-to-noise ratio are given by

(Ref 1: 586):

' MW x us* (1-2)

where Mts the noise covaritance matrix defined previously, W is the vector

S. of array weights, S* is the vector of St* with S, give by Eq (i-i ).
'I.

The star denotes the complex conjugate. The u is an arbitrary constant.

! z2The reader should refer to Appendix A for verification of this result.

6
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Applebaum then generalized this result. If no noise is incident,

then the noise covariance matrix reflects only receiver noise which is

equal in all channels and uncorrelated between channels. This defines

the quiescent noise covariance matrix as Mq = PqI k where p q is quiescent

noise power and Ik is a K x K identity matrix (Ref 1: 589). Since

Mq- = 1 k , the quiescent weights are W = Mq'1S = I' S*. Thus W and
q q qq

S* are scalar multiples and S = Wq* s a measure of the quiescent

weights and hence quiescent pattern (Reference 1). In fact, S corresponds

to uniform quiescent weights. If one wants different quiescent weights,
p*'-. he merely defines T W - Wq* with the new weights and using MW = MT* comes

up with the modified control law (Ref 1: 588 ):

*4 MW MqW (1-3)
q q

7



This accepts some degredation of optimal signal-to-noise ratio in order

to achieve control over the quiescent pattern (Refel: 587 )

According to Applebau, Equation (1-3 ) gives weights that place a

pattern null on a jammer. To illustrate this, and see what the array

weights are, consider a K element array whose mainbeam is angle os from

mechanical boresight. The quiescent noise covariance matrix is

Mq PqIk as stated before. The quiescent weights are given by:

a1

a2 e-Jad sin es

Wq = a3  e-J2od sin es (1-4)

ak e-J(K-1)od sin es

The ai are the real number amplitude weights and if the ai are all equal,

the quiescent pattern is just the familiar sin(Kx)/sin(x) (Ref 1: 589 ).

From fundamental antenna theory, the quiescent pattern is (Ref 1: 589 ):

K j(i-1)ad(sin e-sin es) (1-5)

F. q () i e

where e is the angle of observation referenced to the mechanical boresight.

Vector notation greatly simplifies the task. Therefore, defining the

vector B for the sake of convenience as (Ref 1: 589 ):

1

e Jd sin e

B - ei2Bd sin e (1-6)

e J(K-i)Bd sin 0

8
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permits the quiescent radiation pattern to be rewritten as:

TFq(0) BTWq (1-7)

With this preliminary out of the way, one must now seek an expression

for W. From Eq (1-3) and Mq - p qlk , the W is (Ref 1: 590 ):

W- PqM-Wq (1-8)

One must now find the noise covariance matrix and hence M'I•

Define the jamming signal in the first array element as J(t). Then

the jamming signal in the 1th element is Ji(t) - J(t) exp [J(i-1)Bd sin ej].

The covariance between Ji(t) and Jk(t) is:

E [Ji*(t)Jk(t)] = E[J*(t)e-j(i1 l)Bd sin eJd(t)ej(K-1)sd sin ej]

- E[J*(t)J(t)] e
j(i-k)d sin ej

= E[.Jm)l2 e-J(i-k)Bd sin ej

= pj e-j(i-k)od sin ej (1-9)

Consequently, the covariance matrix of the jamming signal is M. =

p.(exp[-j(i-k)od sinej]) for i and k from one to K. M is Hermitian with
*J J

all elements on the same diagonal equal. Its simple structure permits a

further modification (Ref 1: 590 ). Defining the matrix (Ref 1: 590 ):

41

1.eJod sin eJ Q
H eJ 2 0d sin eJ (1-10)

ej(k-l)od sin ej

and also defining U as a KxK matrix of ones leads to (Ref 1: 590):
7

. . :.:. MI - P H*UH (1-11)

9



*Since the receiver and jammer noise are uncorrelated, the total noise

covariance matrix is (Ref 1: 590):

M = M q + Mi = PqI k + pjH*UH (1-12)

Applebaum gives M1 as (Ref 1: 590 ):

- 1  ( q[I - + ) H*UHJ (1-13)

Applying this expression to Eq (1-8) leads to the following equation

defining the weights (Ref 1: 590 ):

PWq p q (1-14)

Some further simplification is in order ( Ref 1: 590):

a1

C a2 eid (sin ej - sin es)

HWq = a3 e id (sin ei - sin es) (1-15)

ak eJ(K-1) Od (sin ej - sin os)

%

. UHWq Fq(eJ) (1-16)
q q0

.s~. 10
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e-Jd sin ej

H*UHW = Fq(ej) e-J2od sin ej (1-17)

e-J(K-1) Bd sin ej

Defining the vector in Eq (1-17) as B* allows one to write Eq (1-17) as

(Ref 1: 590 ):

H*UHW =F(ej) (1-18)

Substituting Eq (1-18) into Eq (1-14) results in (Ref 1: 590):

W = Wq ) o Fq(e,)B* (1-19)

To get the nulled pattern, one multiplies Eq (1-19) by BT where B is

defined in Eq (1- 6) (Ref 1: 590 ):

F(e) Fq (e) - (qP.l J ) Fq(ej)BTB* (1-20)
qq +.p

BTB* = 1 + •ji d (sin e - sin ej) + ... + eJ(K-1)od (sin e sin ej)

~K
=K eJ(K-1)Bd (sin e - sin ej)

K=1

S [eJ d (sin e - sin e)](K-1)
E E (1-21)

K-i

Eq (1-21) is a geometrical progression and simplifies to:
BTB.  eJ(K-1) (sin esin[ (in e - sin j)] (1-22)

B B* e
sin[ 2  (sin e - sin ej)]

11



Since (P ) F (ej) is just a number, the second term in Eq (1-20)

NIFN is a sin(Kx)/sin(x) pattern with its main beam at ej (Ref 1: 590).

This comprises the nulling mechanism.

Eqs (1-20) and (1-22) provide an expression for a pattern with a

null at ej. However, the expression for the weights should be broken

down for use in Section II. Using Eq (1-14), the tth weight is:

Pi K
W-_a (KOi e.j(i-k)od sin ej (W)

- Pq '~K-i1WI-(Wq)i~ -. K (1-2q)

qi Joi~di sin ej Ke jd sin Gj]k (W
a (W q) I - -pqlKpj K-IE eq~ 1-3

Substituting (Wq)i = 1 into Eq (1-23) for uniform quiescent weighting

gives:

w+ 1 J J di sin e K [ejad sin OJik
W I - +K e- s ej (1-24)

Employing geometrical progression and some algebra gives:

=Pi sin (K d sin eJ) d
sn ej(l+K-21) sin ej

Wi =1-q+j sin ( O sin ej) e((1-25)

Eq (1-25) will figure prominently in Section II while Eqs (1-20) and

(1-22) will be important in Section IV.

'12
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II Pattern Calculations

/.: Aperture Integration

All the radiation patterns in this work were computed by integrating

an aperture electric field distribution over an aperture plane. For

simplicity, calculations involved only two dimensional geometrics; there-

fore, only one dimensional, single integrations were involved.

The expression for radiation pattern follows from the following

definition for an electric vector potential:

- - Vx T (2-1)

where! is electric field and "T is electric vector potential. The F

*a solves a vector wave equation with a magnetic current source term

( Ref 4: 56 ). It is given by ( Ref 4: 56 ):

s (- T 8R ds' (2-2)

where

R- 1r-r

* - Observation Point Position Vector.

7- Source Point Position Vector.-Rs(-1 )
-(r ) - Magnetic Surface Current.

z Surface on which 9 s  ) exists.

The far-field approximation for this is (Ref 12: 379):
a. *

a.-,-.

e- ~ r" -3.

1W f s(71) 1 ds (2-3)

13



where r is the spherical coordinate radial unit vector and r is the radial

(. w~distance to the observation point.

In aperture integration problems, the magnetic surface current density

on surface E is an equivalent current derived from the electric field on

the surface (Ref 12:376 ). The expression is (Ref 12:376 ):

a Exn (2-4)

where E Is the electric field on surface Z and n is the outward normal

unit vector to E. If one selects a planar E, then n remains constant on

the surface of integration. Substituting Eq (2-4) into Eq (2-3) yields

Otef 12: 382):

S"'e e r'r l ds 1] x (2-5)

The aperture surface E is often chosen to lie in the xy-plane. The

aperture electric field E a is also assumed to be everywhere tangential

to the aperture plane ( Ref 12:381). Under these conditions, n is simply

the z-directed unit vector and ds1 is just dxldy1 where the primes refer

to points in the aperture plane. For convenience, the bracketed term

in Eq (2-5) will be called P ( Ref 12:382).

Since Ea has only x and y components, the T vector has only x and y

components. Identifying these components as Px and Py and substituting

into Eq (2-5) results in ( Ref 12:382):
e-Jor

T-- (Py x -Px y) (2-6)

where x and y are the x and y directed unit vectors respectively.

Given the magnetic vector potential, defined by iT - x [, the far

zone electric field is 'E - Jw1u less the r component, where w is radian

14



frequency and u is the magnetic permeability (Ref 12: 25). Since

T is the dual of T, the far zone R field Is simply R - jw*J] less its

r component, where e is the permittivity ( Ref 12:379). The far zone

fields exhibit plane wavE. behavior; therefore, E a, if x r =

x r. Since - 2f /c , where c is the speed of light, we

have 1 ; w / . This gives the far zone electric field as

(Ref 12: 383):-

= * jrx F (2-7)

Substituting Eq (2-6) into Eq (2-7) yields the expressions for far zone

electric field (Ref 12: 383):

E Z EO -o I (Px cos + Py sin 0) (2-8)

EO U -Jor cose (Py cos 0 - Px sin 0) (2-9)

To develop the pattern equation, one must consider the geometry

illustrated in Figure 2-1. The geometry is assumed to be completely

symmetrical in the x direction. The aperture plane lies on the y axis

and extends from yamtn to y amex In this situation, 0 - w/2 The feed

is an electric line source along the x axis in the positive direction.

This results in an x directed aperture field given by 'Ea - x 6(x) Eax(y).

Feeding this information into Eq (2-9) gives:

.~E - e.il~r ax

- E* M cose f Eax(y 1) e Jo~y 1sine dy1  (2-10)
= :. Yamin

.where r.r was executed using r * y

*-~; 15*' 4..
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When pattern calculations are made, the radial distance remains

constant and terms involving it are eliminated along with other constant

terms by normalization. The resulting for field pattern is given by:

I amax j sine dy1

G(e) = I amin (2-11)

ma-cs Yamax 1 JYsine 1

maxlcosyf)ax" A
. Yamin

When using aperture integration, one normally confines his attention to

Uangles near boresight where cost will remain close to unity. Conse-

quently, the final expression for pattern used in this work is:

-16
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m'x Eax(y ) e sine dyl

G (e) yamin (2-12)

max lax Eax(y 1 ) ejoy I sine dyl

Yamin

Figure 2-2 shows Eq (2-12) applied to a uniform distribution over a

100 wavelength aperture. Figure 2-3 shows the results from a 10 wave-

length aperture. Analytic integration results in:

sin ( y sin e )6
m

(e) = (2-13)
81

I. Y sin e

For the 10 wavelength aperture, the first null occurs at sin 6 = 0.1

corresponding to e - 5.7 degrees.

Q In the preceding discussion, the aperture fields were assumed

tangential to the aperture plane, that is the field vectors lie completely

in the plane. For non-uniform phase distributions, however, this is not

the case (Ref 10: 162). The direction of propogation of the reflected

wavefront is normal to the eikonal surfaces. Since in the geometrical

optics approximation the fields exhibit plane wave behavior, the H field

will not lie in the aperture plane for the x directed Y field considered

previously if the phase distribution varies over the aperture.

If one considers the effect of non-uniform phase distributions, he

must employ an alternative expression such as in Reference ten. The

expression for far-zone electric field is (Ref 10: 161):

S -- r rxf{n x~a -Ea (s x1a) n -(sxa)(n -1)]}eJBrlds

•~ -" (2-14)

17



,4.'... 

"

I - II.... 
,...,0

-.. 0 .

\, . .- %.. '00

tmy

.4- .4

I : -._. i lt i 
0

.e .g 2-0

4 

r, , , ' 1 _ , 
. . , , -. , -,-4- 

. , _ 
-



'1"

0

0

I~I

4 4

4: I
1.~ 1 

0

.4

0**.

* I
~.1~~

1*PIg 2-3.
4. 

19q~'. 

_____ 
- .... ~h 

-. a* * *



where

z = plane aperture surface

n = outward normal to z

r = unit vector pointing from origin to field point

r. - vector from origin to ds' in aperture

s = unit vector along ray 'irough aperture

Eq (2-14) reduces to Eq (2-12) if the two dimensional assumptions are

applied and the phase deviation from uniform are assumed small giving s

approximately equal to n (Ref 10: 162). Ignoring the phase error is not

really correct but is frequently done to simplify calculations; however,

the results have primarily qualitative value (Ref 10: 173).

* p. Applebaum Weights and Patterns

One reason for using the simplified aperture integration formula is

its similarity to the summation expression found in array calculations.

This suggests that one might use the Applebaum array weights as discrete

points in an aperture distribution. Since the aperture integral is

analogous to the array summation, such a distribution should produce a

" similarly nulled pattern. This is in fact the case.

To illustrate this Eq 4-25 from Section I was applied with K = 201

and d = 0.05 on a ten wavelength aperture. Figure 2-4 shows the aperture

magnitude distribution and Figure 2-5 shows the phase distribution for

creating a null in Figure 2-3 at two degrees. Similarly Figures 2-6 and

2-7 show aperture magnitude and phase respectively for a null at seven

degrees, while figures 2-8 and 2-9 correspond to a null at ten degrees.

Figures 2-10 through 2-12 show the patterns resulting from the appropriate

~..: distributions for two, seven, and ten degrees respectively.
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Further experimentation indicates that the phase distribution is the

dominant factor in determining null location. Figure 2-13 shows that

aperture integrating the phase distribution of Figure 2-5 with a uniform

amplitude distribution creates a null at 2.7 degrees. Similarly, Figures

2-7 and 2-9 integrated with uniform amplitude distributions yield nulls

at 6.7 degrees and 10.7 degrees as shown in Figures 2-14 and 2-15.

Implementing the amplitude distributions with flat phase does not con-

sistently come as close. Such calculations result in nulls at 4.5, 6.3,

and 10.9 degrees for the three respective cases. Especially in the two

degree null case, the flat phase patterns do not deviate much from the

quiescent pattern with nulls at 5.7 and 11.5 degrees as shown in Figures

2-16, 2-17, and 2-18. This implies that the phase distribution should

receive priority in any attempt to implement the aperture distributions

shown in Figures 2-4 to 2-9. Using only the phase distribution, however,

results in an as yet undetermined error which deserves further study.
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III Secondary Pattern Calculation

Geometrical Optics

In order to approximate the field distribution in the aperture,

geometrical optics principles were applied to the reflector shapes in

question. The use of geometrical optics requires that the dimensions

of the scattering surface be large compared to a wavelength (Ref 12:454 ).

It also places a constraint on the smoothness of the surface, since the

radius of curvature of the surface must always be large compared to a

wavelength (Ref 9: 123 ). Even if these requirements are met, however,

the approximation is still rather crude. All diffraction effects have

.-. been ignored. Thus, the reader should interpret the results qualitatively.

The null positions and the effect of reflector shape on them are the points

to watch.

Specialized to the two-dimensional case, the geometrical optics

expression for amplitude is (Ref 12: 450):

rEl -71rcw (3-1), rcw+

0 ,

where JE ol is the magnitude of the field at the reference location and

rcw is the radius of curvature of the wavefront at the reference point.

The p denotes the distance from the reference point to the field point.

To include phase, one simply applies a phase factor determined by p.

The resultant expression is (Ref 12:451 ).

E = IE 0 rcw e-jap e 0o (3-2)

o rcw+ P
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where a is simply 2w/x and 0o is the reference phase at the reference

point.

In order to compute the aperture field contribution of a single ray,

one must first determine the field radiated from the feed at the point of

impact for that ray on the reflector. In this work, the feed is assumed

to be a line source at the origin. Placing the reference point one wave-

length from the feed and choosing E 01 = 1, 00 = - in Eq 3-2 yields:

E = e-jB( I + p) (3-4)

for the field phasor at the point of reflection. But I + p is simply

the distance from feed to reflection point, so letting 1 + p = r, gives:

E 1 . e-Jrl (3-5)

To calculate the field phasor in the aperture, one must compute 2 , the

distance from the reflection point to the point where the ray in question

intersects the aperture. Then using JEo =_ and 00 -or1 in Eq 3-2

* gives:

E * 1 re 2 e 1Brl (3-6)
rcw + r2

All that remains in finding rcw, the radius of curvature of the reflected

*; * 
"  wavefront. This is given by (Ref 12:452 ):

..

1 1 + 2 (3-7)
rcw r1  rc cos 5O

where rc is the physical radius of curvature of the reflector at the

reflection point and o is the angle of incidence of the incoming ray

*with respect to the surface normal. If the surface is convex when
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viewed from the line source feed, rc is greater than zero. If the

surface is concave, the rc is less than zero. Thus, given a ray, Eq 3-6

determines the aperture field due to it.

Ray Tracing

Before one can compute the aperture field approximation, he must

first trace given rays from the feed through their points of reflection

to their aperture intersection points. Figure 3-1 illustrates the

geometry, The e is the angle the incident ray makes with the horizontal

axis. The reflector surface is described by a discrete grid of equi-

spaced points.

The first step is to find the (xi, yi) impact point from et and the

grid. The line y = kx represents the incident ray in this two dimensional

geometry, where k = tanes. To determine the impact point, one must define

a miss function (Ref 11:1449) gn = kxn-Y. Testing each grid point will
n n n

yield same (xn- 1- Yn-1) and (xnlyn) between which the miss function

changes sign; because gn 1gn < 0. The impact point lies on the reflector

surface between these two points. This impact point is determined by

ORef 11:1449):

i  Yn(1-F) + Xn1 F (3-8)
(3-8

. Ya ; Yn(1-F) + yn-1F

where F = g /(gn-g )n n n-1)

To determine the point of impact in the aperture plane, one must

consider Figure 3-2. The 0 and the 1fare the angles made by the surface

normal and the reflected ray respectively with the horizontal axis.

Snell's Law at the impact point, valid for the smooth surfaces in question,
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dictates that the angle of incidence and angle of reflection with respect

to the surface normal be the same (Ref 11:1449). This angle is denoted

by 6 in Figure 3-2. Simple geometry then yields:

x = 20 - e (3-9)

Determining 0 requires approximation of the first derivative of the

reflector surface at the impact point. Calculating it at (xnlynyl)

and (XnYn) by a well established finite difference formula, then using

linear interpolation to (xiyi) yields acceptable results. Once this

derivative is determined, 0 can be found. The tangent unit vector to

. -. the surface at (xiyi) is given by t = cosax + sina y, where a is the
-.-..,
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,ng 3-2.. Angle Definitions

I angle made by t and the horizontal. The slope of the line determined

by t is tan* and since this line is the tangent line to the curve at

(x -y)y :

tanG = dx = x (3-10)

where dy/dxlx=x i was already discussed. The normal vector at (xi,y i) is

n = dt/da = sinax + cosy. The slope of the line determined by the

normal is tanO; hence, tanO = cos/(-sna) = -coto which implies that

tan - -coto, Substituting back into Eq 3-20 yields 0 in terms of a known

quantity (Ref 11:1449):

-coto =* x (3-11)
dx X X1
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One must consider some computational points before actually using

Eq 3-11 to find 0. The range of 0 is limited to 0 < i<. If

dy/dxlx=x i > 0, then 0 > 1/2" If dy/dxlx=x1 < , then 0 V < /2" The

case dy/dxlx=x i = 0 implies that 0 = V/2. Any scheme to compute 0

should reflect this. Since arctangent implementations on computers

generally range only from -f/2 to 7/2' one must exercise care in the

computation. A suitable scheme is Eq (3-12).

tan"1 [l(jlill1] <Xx~ o

0= dy (3-12)

dxlx=x. = 0

- tan'l[(y, )1x =
)  > 0

. 1 1

Using 0 in Eq 3-9 gives J . From Figure 3-3, the point of intersection

of the reflected ray with the aperture (x a,O) is given by:

x. - yi/tan x <M
i  1

Xa x 1 =2 (3-13)

xi + yi/tan (X->) x 7

To compute the field contribution, one simply applies Eq 3-6 along

with Eq 3-7. The physical radius of curvature at (xi,y i) of the reflector

surface is simply:

E[ + )233/2

r dxx I 1 (3-14)
.. 2

dx x=x1
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where the sign of the second derivative is preserved in order to make rc

appropriately positive or negative based on convexity or concavity.

The process of approximating the second derivative exhibits an

inherent instability which defied efforts at eliminating it. The effect

of the instability will show up graphically in the spherical reflector

example. Appendix B describes the problem.

Aperture Field

After defining an aperture, usually centered on the reflector's
boresight and wide enough to include all reflected ray intersection

points, one selects a set of discrete points in the aperture at which

he wishes to compute the field. Taking each point in turn, one determines

," ". which rays intersect the aperture at that point and adds the field
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contributions of these rays. For most relatively smooth reflectors, only

. . one ray will strike the point in question.

To find the right ray, one steps through possible values of e until

he finds e1 and e2 such that xa2 < xa < Xal where xa is the desired

-; aperture point. Then one computes Xa3 from e3 = (eI + 02)/2. Then one

uses a bisection algorithm to close in on the correct value of e. If

-a - Xa3 <0 , then the correct e is between e3 and 02. If xa - Xa3 >0 ,

then the e is between e1 and e3. The bisection process is then repeated.

When xa - Xa3 is sufficiently close to zero, the process terminates.

When completed, the process yields a discrete grid of aperture field

points.

Parabolic Example

The scheme described before will now be tested on a parabola.

Figure 3-4 shows the parabola. Its diameter is 10OX where x is the

*, wavelength. The focal length is 50X with focus at the origin. The feed
5'

is an x directed electric line source at the origin. The aperture

electric field will also be x directed, by application of Snells Law

(Ref 12:426).

4Analyzing the parabola, one notes that the phase will be constant

on an aperture centered on boresight and 10OX wide. Thus, the wave front

incident on this aperture is a plane wave. Since a plane wave has constant

amplitude, attenuation occurs only between the feed and the reflector.

Using this in Eq 3-6 yields:

E 1 1 (3-15)

IF
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A little analytic geometry shows that r= 501 + (-Y-)2]. Normalizing

this to a unity maximum gives:

1
. E(3-16)

~10

Figure 3-5 shows the amplitude distribution generated by the method of

this section. The method duplicates the analytic geometrical optics

analysis. It also duplicates the constant phase, but the flat line

has not been plotted. Figure 3-6 shows the Section II pattern result.

Figures 3-7 through 3-9 correspond to Figures 3-4 through 3-6,

but with diameter lOX and focal length 5X. For such a reflector, the

validity of geometrical optics is questionable, since diffraction effects

are present. However, for angles near boresight, the pattern results

are still useful.

Spherical Example

-i Figure 3-10 shows the test surface. The radius of curvature is

200x. The diameter of the reflector is 10OX. The feed is situated on the

boresight 50X from the center of the reflector and coincides with the
-SI

origin. The aperture is centered on a feed and is 10OX wide to include all

rays.

Figures 3-11 and 3-12 show the amplitude and phase calculated by

the methods of this section with analytic determination of the second

derivative. Figures 3-13 and 3-14 shows the results using the final

second derivative approximation in Appendix B. While the phase result is

*: good, the amplitude exhibits a messy error distribution.

The net effect of the error is not overly drastic. The messy ampli-
•S tude distribution seems to cluster about the correct one. Also, phase is
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dominant in determining null location. A comparison of patterns is in

.,. ,-.. order. Figure 3-15 shows the pattern resulting from the analytic

derivative distribution. Figure 3-16 shows the pattern of the messy

distribution. The amplitude error has effected side-lobe levels and

null depths but not null locations. The side-lobe level and null depth

errors are noticeable, but not intolerable.

Figures 3-17 through 3-23 we correspond to Figures 3-10 through 3-16

4for a spherical reflector with all the previously described dimensions

reduced by a factor of ten. Comparing Figures 3-22 and 3-23 shows that

null location has not been altered. Again, the effect of the amplitude

error is limited to side-lobe level and null depth. Consequently, this

work will continue to employ the technique of this section, even though

the results are only qualitative, except for null location. Clearly,

future work must refine the second derivative approximation.
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IV Beamshaping

C- ""Reflector Equation

The simplest method for implementing a given antenna pattern applies

geometrical optics to a known power pattern to get a reflector shape that

generates the pattern (Ref 10: 497). The technique is crude, but might

provide a first approximation (Ref 10: 497). If the reflector resulting

-, from the method is physically unrealizeable, one cannot however, simply

call the pattern unrealizeable. The method is not that conclusive. The

reader should also note that, because the method is based on geometrical

optics, only reflectors large compared to a wavelength should be considered.

Assuming that the desired power pattern is P(y) between yl and Y2,

one can generate a reflector as follows. Referring to figure 4-1 (Ref 10:

498), positive angles are clockwise from the horizontal and the distance

from the feed point to the reflector surface for a given value of x is

defined to be r(x). The x is the angle from horizontal to the incident

. ray, while y is the angle from horizontal to the reflected ray. The Yl

and Y2 are the limits of the range over which one wished to specify P(y);
.4..

the pattern outside the range will be ignored, but the reader should be

aware that diffraction effects will yield non-zero field. The pattern

level will fall quickly outside the specified range as long as the size

of the reflector meets geometrical optics criteria (Ref 10: 497). The x,

and x2 define the angular extent of the reflector. The geometry of figure

4-1, coupled with the law of reflection, leads to the equation defining

the reflector contour (Ref 10: 498):

1 dr x - y

r x = tan 2 (4-1)
.476
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.- Before one can integrate Eq (4-1), he must first find the relation-

ship between y and x. This arises from power considerations. Geometrical

"""optics demands that the power in a given tube of rays must remain constant

(Ref 2: 404). Consequently, if no loss occurs at reflection, the power

in the incident ray tube must equal that in the reflected ray tube (Ref 10:

499). Defining the incident power pattern from the feed as I(x) and con-

sidering incident and reflected ray tubes with angular width dx and dy

respectively, energy conservation gives (Ref 10: 499):

I(x) dx = K P(y) dy (4-2)

where the K is a constant of proportionality. The fact that the total

power from the feed must equal the total reflected power determines the K

from (Ref 10: 499):

J 1(u) du = K J P(v) dv (4-3)

X1  y

- To determine the relationship between y and x from Eq (4-2), one must

consider that the power in any feed range x, to x will equal the power in

some corresponding reflected range yl to y. Applying this information to
Eq (4-2) yields (Ref 10: 499):

y 1I P(u) du = - I(v) dv (4-4)
.K
Yi x1

Eq (4-4) defines y implicitly as a function of x. In order to simplify the

calculations, I(x) = 1 was assumed, implying an isotropic feed over the

range xi to x2. Using this in Eqs (4-3) and (4-4) gives a simpler expression
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for the right hand side of Eq (4-4):

- f- y
f P(u) du = x 1 -2 P(v) dv (4-5)

! Yl x2- x1

One can think of Eq (4-5) as defining g(y) = f(x). The y can be computed

from this as y = g-1 (f(x)) which is y as a function of x. In general, y

must be found through interpolation of numerical data, since the analytic

integration of P(y) may not always be feasible.

To illustrate the use of this relationship, a simple example might

prove useful. If one defines P(y) = csc2 (y) cos(y) then is follows that:

~yy 2

P(u) du - 1 Pr (4-6)
sin(y I) sin(y 2)

Similarly:

y
1 1

P(u) du - (4-7)
f sin(y I) sin(y)

Sticking Eqs(4-6) and (4-7) into Eq (4-5) yields an expression for y:

sin- -
(4-8),. in(Yl) r 2x- x1i/

This can be used in solving for r(x).

Eq (4-4) enables one to integrate Eq (4-1) directly. Doing so results

in an expression for the radial distance from the feed to the reflector

,.* ,. surface for a given angle x (Ref 10: 499):
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in L r tan - du (4-9)
0ro  0 2

This leads directly to:

r(x) = ro exp { ta u -y2u)] du (4-10)

The ro is a scale factor which determines the absolute dimensions of the

reflector. In choosing ro , one must always remember that the contour

was derived from geometrical optics principles and one's confidence in it

should deteriorate as the size of the reflector decreases. Also, the

a. -technique ignores any phase considerations and is crude. It is really best

applied to attempts to implement main-beam shapes, not patterns.
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Implementation

As stated earlier, an isotropic feed simplifies calculations, so this

,• :-.... was assumed. Therefore, Eq (4-5) applies. Furthermore, x, and x2 were

chosen as -60 degrees and +60 degrees respectively. This gives x2 - X1= 1200

and (x - x1)/(x2 - x1 ) = (3x +iT)/(27v). Given this, the computerized

application of beamshaping is simple:

1. Select Yl, Y2 , and P(y).

2. Compute Pr = y 2P(u) du

3. Define f(x) = Pr (3x +?" )/(21r).

4. Tabulate g(y) = Y P(u) du for yl to Y2 "

yl

5. Compute y = g1 l(f(x)) by interpolation whenever needed.

6. Tabulate r(x)/r 0 from Eq (4-10).

7. Compute r from chosen reflector diameter and choice for x or x

8. Scale r(x)/r 0 to get r(x).

To illustrate beamshaping, a sin(x)/x example was computed. For this

case, the expression for P(y) was:

s'n(sin sin y)

P(y) = sin (4-11)
v.'.sin y

where L was the diameter of the desired reflector, chosen to be 100 wave-

lengths. Figure 4-2 shows the result which is discernably parabolic.
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-.-. Pattern Null Attempt

In order to find a nulled P(y) to use in the method of this section,

the reader should refer to Eqs (1-20) and (1-22). These equations define

the nulled pattern resulting from an Applebaum array of K elements. With

uniform quiescent weighting, the quiescent pattern is a sin(Kx)/sin(x).

For a continuous aperture with a uniform distribution on it, the pattern

is a sin(x)/x. One might form a loose connection between the two cases

and use the Sa(x) = sin(x)/x in place of the sin(Kx)/sin(x) in equation

(1-20) when trying to find a nulled pattern for the case of apertures.

Interpreting Kd as L and using Sa(x) instead of sin(Kx)/sin(x) in Eqs (1-20)

and (1-22) yields:

P(y) = jSa(O) - exp(jz) Sa(0j) Sa(z) 2 (4-12)

. where

GO 0 / sin y

0j= 13 T sin y,

z =".? z = (sin y - sin y.)

Yj= angular location of desired null

The reflector resulting from this is shown in figure 4-3. The reader will

note that the shape is the same as that for the sin(x)/x pattern shown in

figure 4-2.

The beamshaping technique cannot adequately cover the nulling case,

because it ignores all phase considerations. Its primary application is in

.,[ the synthesis of reflector shapes which will produce a given main-beam
1 4.

configuration, such as the csc-squared beam discussed earlier. Pursuing

it further is not recommended.
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V Suggested Extensions and Summary

Refined Analysis

Before one can refine the analysis technique given in this work, he

must first solve, or at least circumvent, the second derivative instability

described in Section III and Appendix B. A possible fix might be to alter

the computational perspective used in the program in Appendix D. Instead

of calculating r as an intermediate step, one might do better by finding

rcw in one step:

V '. rcw (5-1)
1 + 2 f"(xij r1

(1 + (f'(xi)) 2 )3i2cos d

where rc and rcw are the physical radius of curvature of the reflector at

xi and the radius of curvature of the reflected wavefront respectively.

The r is the distance from the feed to the reflection point (xi,y i) and

d is the angle of reflection with respect to the surface normal. Such a

computational trick might smooth the results. The idea is due to Capt.

Thomas Johnson, who was teaching at the Air Force Institute of Technology

at the time of this writing.

Given that one finds a workable fix, he might seek an analysis tech-

nique which more faithfully reflects the actual fields and patterns. Much

of the work discussed previously involved reflectors ten wavelengths across.

One can justifiable question the accuracy of geometrical optics alone in

such a case, since diffraction effects should be quite noticeable. Fig 3-18

shows a discontinuous aperture field which is common in a geometrical

optics analysis. At ten wavelengths, however, one expects the field to

vary much more smoothly. Generating the aperture field distribution with
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ra simple geometrical theory of diffraction (GTD) approach will do much for

this problem. Such a technique could also be used to compute the far-field

pattern; however, a GTD generated aperture field coupled with aperture

integration would be more instructive in the nulling problem.

.. 

Figure 
5-1 shows 

the simplest 
GTD model 

for the 
problem 

under 
consider-

~ation 

here. 
The total 

field 
at a 

point 
on the 

aperture 
is the 

sum of 
the

: 'i 
contributions 

from 
all reflected 

rays 
and the 

two rays 
singly-diffracted

".-• 

from 
the edges 

(Ref 
12: 484). 

The reflected 
rays 

are found 
by the 

methods

.2 

of Section 
Ill. 

The calculation 

of the 
diffracted 

fields 
is discussed

" N 
elsewhere 

(Ref 12: 458-477); 
a straightforward 

method specialized 
to the

ii 

problem 
at hand 

can be found 
in Appendix 

C for 
the reader's 

convenience.

! " 
Higher 

order 
effects 

decrease 
in significance 

with 
increasing 

reflector

'... size, inclusion of these is a discretionary matter.
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'" Suggestion for Implementing Distributions

The most promising technique for implementing the distributions of

Section II is due to Galindo (Ref 2). The method employs the principles

of geometrical optics to implement arbitrarily specified aperture amplitude

and phase distributions with a dual reflector geometry as shown in figure

5-2 (Ref 2: 404). The problem eventually reduces to the numerical solution

of a coupled pair of first order, non-linear, ordinary differential equations

(Ref 2: 404). The development is intricate and the interested reader

should look to Reference 2 for an explanation of the method. This method

is designed for dual reflectors like that in figure 5-2; however, one

might be able to apply the principles behind the analysis to a single

reflector and develop a similar method, one that considers phase. Reference

.-, " 8 presents a method based on Galindo's but computationally simpler; however,
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its application to single reflectors does not look too promising.

S..Summary

Aperture integration provides a viable technique for considering

pattern nulling with reflector antennas. It is directly analogous to

the summation of element field contributions found in antenna array

calculations. Consequently, the array weights given by Applebaum's

adaptive array formulation can be used as discrete points in a continuous

aperture distribution. Section II illustrated how these distributions

resulted in nulled patterns.

In analyzing large reflectors with non-traditional contours, geometrical

optics is quite useful. The usefulness of the method presented in Section

III, however, is limited by the numerical instability of the second deriv-

ative approximation. The reader will note that the method performed better

on the ten wavelength case than on the one hundred wavelength cases from

a nimerical standpoint. This improvement results from using the same

number of discrete points in the ten wavelength cases as were used in the

hundred wavelength cases, giving a smaller step size for the reflector

grid. Unfortunately, as in most numerical analysis problems, further

reducing the step size does not always give better results. Increasing

the number of grid points in the ten wavelength examples in Section III

in order to shrink the step size actually makes the problem worse. The

-- fix given at the beginning of this section seems the best candidate for

a solution. Given that the numerical problem can be removed, the ray-

tracing/geometrical optics analysis could be useful in furcher work.

Coupling it with a formulation of geometrical theory of diffraction can

make it even more useful.

The beamshaping method presented in Section IV is already well known.

It is easy to implement, but too simplistic for the problem under consideration.
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The results are unacceptable when applied to pattern nulling, possibly

because all phase considerations are ignored. The method was originally

designed to synthesize main-beam shapes and is out of its depth in the

nulling problem. Galindo's method should provide a good baseline for

further studies. Other methods for dual off-set reflectors, also based

on geometrical optics, may also prove useful.

,

-.
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Appendix A: Applebaum Control Equation Verification

Verifying the Applebaum control equation demands that one first find

an expression for the signal-to-noise ratio and then show that the control

law weights in fact maximize the S/N. As a first step, one computes the

outputs vs and vn (Ref 1: 586):

k
vs = a Z wis (A-I)

Qi=1 i

k
'-V vn = Z win i  (A-2)

i=1

If one defines weight vector W = [wI . . . and noise vector

N [n 1  n * * (Ref 1: 590) along with the signal vector defined

-i in Section I, he can simplify the expressions:

=. O vS (A-3)

v = N (A-4)

The next step in determining the signal-to-noise ratio is computing

the noise power in the output, This is given by (Ref 1: 586 ):

r 2

,,. P = E [ I
n n

"..= ' E [Vn*V n]

T T°

- E [(WTN)*(wTN)] (A-5)
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Noting in Eq (A-5) that WTN = NTw, one can further write ( Ref 1:586 ):

" n= (wT)*E[N*NT w (A-6)

However, E[N*NT ] = M, the noise covariance matrix (Ref 1:586 ). This

leads to the following equation for noise power:
P n = (wT )*MW (A-7)

The matrix M is Hermitian and positive definite, so it can be

diagonalized by a coordinate transformation (Ref 1: 586). If one calls

- ethe transformation matrix A, the signal and noise vectors in the trans-

formed coordinates become:

S = AS (A-8)

N = AN (A-9)

To compute Pn under this transformation, one proceeds as follows:

v n = WTN (A-10)

Substituting Eq (A-9) into Eq (A-10) results in:

Vn = TAN

S(AW)N (A-Il)

Comparing Eq (A-l1) with Eq (A-4) implies (Ref 1: 587 ):

W = ATw (A-12)

Employing the transformed vectors gives noise power as (Ref 1: 587 ):
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°"(iT)*E[^NNT]w (A-13)
n

But matrix A decorrelates the noise components and equalizes the power of

each (Ref 1: 587 ). The M can be written (Ref 1: 587 ):

M = EEN*NT] = Pnlk (A-14)

Choose Pn 1 and M = Ik* Thus, Eq (A-13) becomes (Ref 1: 587 ):

p (T).w (A-is)

Substituting Eq (A-12) into Eq (A-7) gives:

n (wT)*A*MATw (A-16)

Comparing with Eq (A-i5) indicates (Ref 1: 587 ):

A*MAT = Ik (A-17)

M = (ATA*)-l (A-18)

To verify the control law, one starts with the optimum weight vector

for a system with equal and uncorrelated noise components (Ref 1: 587 ):

W = US* (A-19)
: 0

where v is arbitrary.

Under the transformation, vs is given by (Ref 1: 587 ):

* Vs = awT (A-20)

Applying the Schwarz Inequality to Eq (A-20) yields:

IVs <I jaZ E(wT)*W]E(ST)*S] (A-21)
- 2,2 (--".
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Substituting Eq (A-15) into Eq (A-21) shows that:

Ps 2,P n < lal (6T),i] (A-22)

This determines an upper bound for signal-to-noise ratio. If one shows

that Eq (A-19) produces this upper bound, then he demonstrates the Eq

(A-19) is optimal (Ref 1: 587 ).

Putting Eq (A-19) into Eq (A-20) enables one to compute the signal

power out Pef 1: 587):

iPS s IVsl 2

2v5  2 ^= Ic(Ti4)*SV

2 lul US )*i] (A-23)

The noise power comes from replacing W in Eq (A-15) with W40 in Eq (A-19)

(Ref 1: 587 ):

Pn = ( T̂)*W

-= - - -2E(sT)*s] (A-24)

Dividing Eq (A-23) by Eq (A-24) leads to:

SPs 2[(j)*

'Fs IS](T). ] (A-25)
n

Consequently, Eq (A-19) is optimal. However, the untransformed array

i: ;.: weights are needed, not the transformed weights W.
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Substituting Eq (A-19) into Eq (A-12) gives an expression for the

* . actual weights (Ref 1: 587 )

-Wo = A TW

4...= A A(uS*)

= l.AA*S* (A-26)

One can infer from Eq (A-18) that M- I A TA* so that Eq (A-26) becomes

(Ref 1: 587 )

=o UMS* (A-27)

This verifies the Applebaum control law to be:

Sw U4% S* (A-28)
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Appendix B: Second Derivative Approximation

The error in the amplitude distribution revealed by the spherical

* -reflector example in Section III arises directly from inaccuracies in the

approximate computation of the second derivative at the impact point on

the reflector surface. The errors in amplitude are severe because the

radius of curvature of the reflector depends on the second derivative.

The equation for the surface of Figure 3-10 is:

f(x) = - - hc  (B-i)

where R = 200, hc = 150. The second derivative is:
c 2

*f"(x) - R 2 3/2 (B-2)

On -50 < x < 50, the second derivative is bounded by -0.00551 < f"(x) <

k -0.005; so f"(x) is always small in magnitude. Since f"(x) is in the

denominator of the expression for the radius of curvature, small errors

in f" can generate wild variations in rc. The results in significant

" . error in the wavefront radius of curvature calculated from Eq (3-7).

This is the root source of the amplitude error.

Unfortunately, as stated on page 205 of Reference 3,"the process of

differentiating is basically an unstable process." The following

formulas were used ( Ref 3: 206):

foe f 1  2f0 + f 1  + terms of order h2  (B-3a)
0 h

- .....,
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"" "f2 + 16fl 30fo + 16f_ 1f-2
fi = 1  0  1  2 + terms of order h4  (B-3b)
- 12h2

fig- h applied twice (B-3c)

Eqs (B-3a) and (B-3b) yielded meaningless results, while B-3c produced

data that clustered around the distribution found from using Eq (B-2) to

compute the second derivative.

Experimenting with double precision arithmetic might generate better

results; however, this will probably not solve the problem in general. In

the most general case, the reflector will be the result of some other

numerical algorithm. Employing double precision will most likely yield

only a long string of meaningless digits, since one cannot know the

reflector surface to arbitrary precision. A simple experiment conducted

in the course of this work showed no difference between single and double

precision amplitude results for the 10-wavelength spherical reflector. In

this experiment, the second derivative was calculated with double precision,

but the numerator differences in the difference quotients of Eq (B-3c)

resulted from single precision arithmetic. This reflected that, in general,

one cannot know f-1 and fl to arbitrary precision. Since no improvement

followed from this, one must conclude that errors in the numerator difference,

magnified through division by the small h2, produce the error. Only if

algorithms which generate the reflector grid can supply very great precision,
will double precision arithmetic prove useful.
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Appendix C: Diffracted Rays

-' The edge diffracted field is given by (Ref 12: 472):

Ed(s) D Ei A(s) exp(-j3s) (C-1)

where

s= distance from diffraction point to observation point.
E- incident field phasor at diffraction point.

A( sj= 1/ s (Spatial Attenuation Factor).
D = diffraction coefficient.

The s is computed by simple analytic geometry, since the points of diff-

raction and observation are both known. For isotropic feed, the Ei

exp(-j/Jrl)/Vri where r, is the distance from feed to diffraction

point.

Calculation of D is somewhat more involved. Figure C-i shows the

geometry. Naturally, the diffracted ray in question is the one which

* intersects the aperture point under consideration. The angle 0 must be

computed based on the location of the aperture point with respect to the

point of diffraction. The 0', however, depends only on the feed location

and the edge location. The angles are measured with respect to the

tangent line to the curve at the edge. Once the angles have been determ-

ined, one should compute (Ref 12: 473-475):

o''.s r 1
rL (C-2a)

s + r

< N+ =71 r + (+ 0')
"( rounded (C-2b)

47r~

N + 7r+ (0-0'
= .- 0.'):rounded (C-2c)

47r
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I .T - + (0 + 01),'. 0 N 0) rounded (C-2d)

N- = IT+ (0 - 01) rounded (C-2e)
4

- The N's are integers found by rounding the given expressions to the

nearest integer (Ref 12: 475). They are in turn used to compute (Ref 12:

474):

a,(0 + 0') = 2 cos 2 [4 N+ (C-3a)

, 2

a-(0 + 0') = 2 cos 2  4TrN; (0 + 0') (C-3b)

2
a%0- ' 2CS 2 [11+- 0- ) (-c

a,..

a'(O - 0') - 2 cos2  4ITN: (0 01) (C-3d)

a' Defining the following is helpful (Ref 12: 474):

Q = -exp(-j1T/4)/(42rr ) (C-4a)

KI = cot 1T+ ((C-4b)

K2 = cot [ (0. 0'.)j (,-4c)%. *., .

K3 - cot TT + (0 + 0-) (C-4d)

4
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K4 =cot (0+ ' (C-4e)
4

Also, F(X) as follows is needed (Ref 12: 474):

F(X) = j2 IV3I exp(iX) ,exp(-jt2) dt (C-5)

With all the preceeding definitions, one can calculate the diffraction

coefficient (Ref 12: 474):

D =Q [ K1 F( .L a4(0 -0')) + K 2 F( L a-(O -0'))

K (La+(0 + 0')) + K4 F a-CO +0)] (C-6)
3 K4

The reader should note that Eq (C-6) applies only to the problem at

hand, a straight edge with an incident field parallel to the edge. The

reader should consult Reference 12 and available literature for any

other problems.
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Appendix D: Programs

This appendix contains programs used in this work. The language is

77 standard Fortran. The purpose of each program or subroutine is noted

in the listings themselves.
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SSubrou.tine AP TFLD(RZ, NC.FD .- I YA-i- PFAYS r ".tFYAN:

* eWAFTFLEJ is the cntrolling rouine fcr th- -11 x:.-
* method and will calculate on approximate aperture fieLd.

* RZ is the grid of reflector points, given as distance above
* the aperture plane.

* NGRID is the number of grid points,

* TI and YA are working arrays* The NRAYS should he chosen as
* some appreciable froction of NGRID, soy 1/4.

* ~EA is the array of approximate aper'ture field va.l'!eE.'i.
* YEA is the array of aperture points.. The NAP is the numiber

* * of aperture points,

Inputs* RZ,NGRIt'NRAY6rNAI'

R eol RZ(NG;'I)TI(NAYS),YA(NRAYS6)Y-A(i'JI-,)
Complex EA(NAP)
Common /BOUNDiS/ RFYMINRFYMAXrYEAMIi4YEAMAX
Common /CNSTNT/ PIBETA

4 HG - (RFYMAX - RFYMIN)/FLOAT(NGRID-1)
HA = (YEAMAX - YEAMIN)/FLOAT(NAP-1)
Do 1 I:1,NAP

YEA(IM YEAMIN + HA*FLOAT(I-1)
EAMI (0.0, 0.0)

1 Continue
TtIIN - ATAN(RZ(NGRID)/RFYMAX)
TMAX - PI ATAN(ABS(RZ(1)/RFYMIN))

* TIMI) TMIN + DT*FLOAT(I-1)
* Cail TRACE(HGRFYMINRZPNGRIDPTI(I),

1 YA(I,1),YA(I,2),YA(I,3),YA(I,4),YA(I ,': ,YA!Iy,)
2 Continue

Do 7 11,PNAP
0 - YEAMI - YA-(1r1)
If(ABS(0) .LT*1.OE-4)then
Cail FIELD(YA(1,1),YA(l,2),YA(1,3),YA(t,4) ,YA(1 ±),YA(l,4i)

I EAI)
Endif
Do 6 Kin2,NRAYS

0Q = YEA(I - YA(K,1)
If(ABS(00) .LT.1.OE-4)then

.4. Cail FIELD(YA(K,1) ,YA(K,2) ,YA(K,3) ,YA(K,4) ,YA(KS) ,YA- K,6)
1 EAI)

Go to 5
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Endif
If(( ABS( 0) .LT .i .OR-4 . (A BS(TO). ! .. -A I" .j

If(QQQ °GT. O.O)Go to 5
TLOW = TI(M-1)
THIH = TI(K)
V = Q

Dec 1 a0:01 1983 aperture Page 2

Do 3 JJ-1,100
TM = (TLOW + THIH)/2.0
Call TRACE(HGRFYMINRZNGRIDTMYAPT,YXZITHRDZTY,D2Z7DY2
QQG - YEA(I) - YAPT
If(ABS(QQQ) .LT. 1.OE-4) Go to 4
If(Q1*GQQ .GT. O.O)then
TLOW = TM
ai = QQQ

Endif
If(QGO'K0l .GT. O.O)then
THIH - TM
gal = 000

Endif
3 Continue
4 Call FIELD(YAPTYI,ZI,THRDZDY,D2ZDY2,EA(I))
5 a = 00
6 Continue
7 Continue

Return
End

Subroqtine TRACECHYMIN,Z,NG,THETAYAPT,YIZITHRiZDY,vD2ZDY2)

'KTRACE does the actual ray tracing for given incident ray
'angle with the horizontal.

*H is the reflector grid spacing and YMIN is the lowest
*point on the aperture.

A' Z is the reflector grid with size NG.

.' K THETA is the angle that the incident ray makes with the

'K horizontal, measured counter-clockwise positive.

'K YAPT is the intersection point of the reflected ray with
, 'K the aperture plane.

'K YI and ZI specify the impact point of the incident ray.
'K THR, DZDY, D2ZDY2 are the angle of reflection with respect

.1*
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* ,terjvatjve respectively#

* Inputs: H,YMIN,Z,NG,THETA

if ($S(TH!AA - -/20) .LT
YT = 0.0
ZI - Z((NG-1)/2+1)
Ca~ll DERV((NG-i)/2+1,zNGHDZrrYD2LnY2)
Call BOUNCE(YIZIDZDY,THETrA,THR,YAPT)
Return

Endif
K a TAN(THETA)
YNHI - YMIN
ONMI = K*YIIN - Z(1)

Dic 1 00:001 1983 aperture Page 3

If(ADS(ONMl) *LT* 1.OE-4) then
YI w YMIN
ZI - Z(1)
Cail DERV(lZPNGpHDZDYD2ZDY2)
Cail SOUNCE(YIZIDZDYTHETATHR,YAPT)
Return

Endif
Do 5 Nin2,NG

YN - YNMl +. H
ON a K*YN - Z(N)
IfADSCGN) oLT, 1*OE-4) then

YI - YN
-I Z(N)

Cail DERV(NZNGHDZDYPD2ZDY2)
* Coil 3OUNCE(YI ,ZIDZDYTHETA,THR,YAPT)

Return
* Endif

If(ONMl$ON .OT. 0.0) G3o to 4
F ON/CON - ONM1)

* Y1 YN*(190 - F) + F*YNM.
U * Z(N)*C190 - F) + F*Z(N-l)
Coil DERV(N-1,Z,NOHDZNMI,D2ZNMI)
Call DERV(N,Z,NG,H,DZDYNPD2ZN)
DYaYI - YNI1
MZY * DZN14M + D2ZNM1*DY

D2ZDY2 a D2ZNM1 + CD2ZN - D2ZNMI)*lDr/H
Call DOUNCE(YIZI,DZDY,THETA,THR,YAPT)
Return

4 YNM =YN

XMIM' , b.% * .% 's -' a'''. * ... ut z



(3NM1 - ON
b CortinueEnd

Subroutine BOUNCF(YIZ1,l'" YTi-ETA. !'PT)

; 0(U"Nr-- s ve .; TTA . '( . 1 * TI- "4 . , i.

Cow, mor !CH3TaT ;-'r , 1. " :"*

lf(ABS(:ILDY) *LT. 1.0E-) then
PHI = PI/2,0
Go to 1

Endif
If(DZDY *LT, 0.0) then

PHI - ATAN(1,0/ABS(DZDY))
0o to 1

Endif
PHI = PI - ATAN(1.0/DZDY)

1 PSI - 2.0*PHI - THETA
THR - ABS(PHI - THETA)
If(ABS(PSI - PI/2.0) .LT. 1.OE-4) then
YAFT - YI
Return

Endif
1f(PSI .LT. P1/2.0) thern
YAPT = YI - ZI/TAN(PSI)
Return

Dec 1 0001 1983 aperture Page 4

Endif
YAPT - YI + ZI/TAN(PI-PSI)
Return
End

Subroutine FIELD(YAPTYI ,ZI ,THRDZY,tD2ZDY2,EAPENi)

S FIELD calculates the contribution of the reflected r.ay
* to the aperture field.

* YA~PT,YIZI,THRDZDYD2ZDY2 are inpukts. They .are the
* intersection of reflected ray with Qperture, impact
Spoint, angle of reflection with respect to surface
* normal ct impact point, and first and second derivatives
*at Impact point respectively.

2 Complex EAPER
Real L
Common /CNSTNT/ PIBETA

,,.9.
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DY =YAPT - YX
RHo =sofdr(Yi*Yi + ztL*zi)
RHOA =SQRT(ZXL*ZI + DY3KDY)
L =R;1-1 + RHOA
PH'r -RETA*iL

A =A*SnRT(810/(1RHG + H))
Go to 1

End if
RC -(1.0 + DZDiY3DZDY)**31.5/D2ZDY2

'IW ASS(1.0/RHO + 2*0/(RCKCOS(THR)))
MfW .LT. 1*OE-5)Go to 1
RCW - 1*0/W
IfCD2ZDY2 *oT. 0.0) A - A3SGRTCRCW/(RCW + RHOA)
If(D2ZDY2 *LT. 0.0) then

!f(ABS(RCW - RHOA) *LT, 1,OE-5)6o to 1
IfCRHOA *LT* RCW) A - A*SGRTCRCW/(RCW -RHOA))

If(RHOA 96T. RCW) then
A =A3SGRT(RCW/(RHOA - RCU))
PHI - PHI + PI/2.0

End if
Endif

1 EAP'ER - EAPER f A*CEXP(CMP1.X(0*OP.HI))
R~etu rn
End

Subroutine DERV(NZNGHPDZDYtD2ZDY2)

3K DERV simply approximate% the derivatives of the reflector
* grid at grid points using established numericual
3K differentiration formulais.

3K N is the point in question, while Z is the reflector gri.d
3K NO is its dimension# H is the spocing. These aire all input#

Real Z(NG)

Dec 1 00100 1983 aperture Paige 5

If(N *EQ. 1) then
MZY *FR2(Z(N),Z(N+1),ZCN+2),H)
DZDY1 -C2(Z(N) ,Z(N+2) ,H)
DZDY2 -C2CZ(N+1),Z(N+3),H)
D2ZDY2 = FR2(DZDYDZDY1,DZDY2,H)
Return

Endif N)te
If(N *EgoNO. te

DZDY =FR2(-Z(N),-Z(N-1),-Z(N-2),H)

- .- ~". .. .



DZDYMI C2(Z(N-2).Z(N)-H)
EILDYM2 - C2(Z(N-3),Z(N-l),H)
D2ZDY2 = F2(EVY-ZrY3,-ZDi,)
Return

End if

ZYM = ZF2RZN- Z(t'-*-1t()vN+P

DZDiY1 = C2(Z(,N),Z(N-r2)%,H)
D2ZDY2 - C2(DZDY'M1,DZDY1,H)

Else IfCN .EO. NO-I)then
DZDYM1 - C2(Z(N-2),ZCN),H)
DZDYI FR2(-Z(N+j)P-Z(N)P-Z(N-I),H)
D2ZDY2 *C2(DZDYIv1DZDYIPH)

End if
Return

End if
DZDY = C2(Z(N-1),Z(N+1),H)
DZDYI = C2(Z(N-2)pZ(N),H)
DZDY. - C2(Z(N),Z(N+2)I4)
D2ZDY2 - C2(DZDYM1,DZDYlPH)
Return
End

Function FR2(XOvXlvX2,H)
F82 - (-3.O$XO + 4#O*X. X2)/(2*O*H)
Return
End

Function C2(XM1,XlH)
C2 - (X1 XM1)/(2.0*H)
Return

I 0 End

9?
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*'APTINT computer ;he f,- fi.].. for , g Jr; ,ae'w:,. :
* distribution.

$ E and P are the amplitude and plase respectively of the
*aperture distribution. Input

* X is a complex scratch array.

* NA is the dimension of the EpP,X.

*F is the pattern that results.

* THETA is the angle from boresight associated with the
*corresponding F value.

*YMIN and YMAX are the dimensions of the cirertu,

STMIN and TMAX give the range of langa for whi.ch the notrar,
*will be calculated.

Real E(NA),P(NA),F(NP),THETA(NP),MAX
Complex X(NA),Q
Common /PIBETA/ PIBETA
H = (YMAX - YMIN)/FLOAT(NA-1)
DTHETA - (TMAX - TMIN)/FLOAT(NP-1)
Do 2 I1INP

THETA(I) - TMIN + DTHETA*FLOAT(I-1)
STH - SIN(THETAI))
Do 1 J1,NA

Y - YMIN + H*FLOAT(J-1)
X(J) = E(J)*CEXP(CMPLX(O.O,BETAIY*STH + P(J))

1 Continue
Call SRL(XNA,YMINYMAX,Q)
F(I) a CABS(Q)

2 Continue
MAX a F(1)
Do 3 I=1,NP

If(F(I) .GT. MAX)MAX = F(I)
3 Continue

4Do 4 I=INP
F(I) - F(I)/MAX
THETACI) n THETA(I)*(180.O/PI)

4 Continue
Return
End

Subroutine SRL(F,N,XMIN,XMAXQ)

49
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Cornplex F(N),ti
H = (XMAX -XMIN)/FLOAT(N-1)

Dec 1 00:09 1983 integrate Page 2

a - (0#0,000)
Do 1 In1,LP2

0 = 0 + (F(l) + 4#0*P(1+1) + F(I+2))
1 Continue

0 = H*Q/3.0
If(L #EQ# N-2)Return
o = 0 + 3.o*H*(I:(N-3)+3#0*1F(N012) +3,o*F(N-.) +F M),'S.O
Return
End

09
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Proram~ CNVRT

ItThis .irogramT converts the rhAci ve;-sov, o 4::sF 'cT

beramshaaping form~ula~s into a~ errui-pacec! 'x-y Porfy,--t.

Real RHO(--dimension of rho--)rPSI(--dimension of psi--)
Open(lrFilein'name of input file')
Open(2,File-Iname of output file')
NP - -- number of input data points--
NO - -- number of output data points--
YMIN - -- lower limit of aperture--
YMAX --- upper limit of aperture--
HO - (YIIAX - YMIN)/FLOAT(NG-1)
Rewind 1
Do 100 K-1,NP
Read(l,5) PSI(K)RHO(K

100 Continue
Dao 6 1:=I.1403

Y = YMIN + GV ATI)
Q a Y - RHOUI*SIN(PSI(1))

P = PSI(1)
R - RHO(1)
Go to 4

Endif
Do 3 J=2,NP

0G - Y - RHO(J)*SINXPSI(J)).0 If(ABS(QQ) .LT, 1.OE-5)then
.4P P= PSI(J)

R - RHO(J)
Go to 4

End if
If(Q*Q0 .GT, 0*0)Go to 2
DRDP -(RHO(J) - RHO(J-1))/PSI(J) -PSI(J-1))

01 aQ
02=-00
P1 PSI(J-1)
P2 a PSI(J)

I P a (P1 + P2)/2*0
R - RHO(J-1) + DRDP*(P - PSI(J-1))

*X - Y - R*SIN(P)
IfABSCX *LT, 1.OE-S)Go to 4
If(01*X .GT* 0*0)then

Plin P
Go to 1

Endif
02 - X
P2 -P
Go to I

100



3 Con tinue
4 z7 VISP

Write(2,P5) YZ

Dec 1 00:16 1983 convert Pog. 2

Stop
End
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